Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592505

RESUMO

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Assuntos
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacologia , Cefotaxima , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio
2.
Agric Human Values ; : 1-20, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37359843

RESUMO

California is a landmark setting for studying produce recovery efforts and policy implications because of its global relevance in agricultural production, its complex network of food recovery organizations, and its environmental and public health regulations. Through a series of focus groups with organizations involved in produce recovery (gleaning organizations) and emergency food operations (food banks, food pantries), this study aimed to deepen our understanding of the current produce recovery system and determine the major challenges and opportunities related to the produce recovery system. Operational and systematic barriers to produce recovery were highlighted by both gleaning and emergency food operations. Operational barriers, such as the lack of appropriate infrastructure and limited logistical support were found to be a challenge across groups and were directly tied to inadequate funding for these organizations. Systematic barriers, such as regulations related to food safety or reducing food loss and waste, were also found to impact both gleaning and emergency food organizations, but differences were observed in how each type of regulation impacted each stakeholder group. To support the expansion of food recovery efforts, participants expressed need for better coordination within and across food recovery networks and more positive and transparent engagement from regulators to increase understanding of the specifics of their unique operational constraints. The focus group participants also provided critiques on how emergency food assistance and food recovery are inscribed within the current food system and for longer term goals of reducing food insecurity and food loss and waste a systematic change will be required.

3.
Front Plant Sci ; 14: 1128579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077630

RESUMO

Introduction: The impact of water quality on the survival of human norovirus (NoV) was determined in irrigation water field run-off (tail water) and well water from a representative Central Coast vegetable production site in the Salinas Valley, California. Methods: Tail water, well water, and ultrapure water samples were inoculated separately with two surrogate viruses for human NoV-Tulane virus (TV) and murine norovirus (MNV)-to achieve a titer of 1×105 plaque forming units (PFU)/ml. Samples were stored at 11, 19, and 24°C for 28 days. Additionally, inoculated water was applied to soil collected from a vegetable production site in the Salinas Valley or to the surface of growing romaine lettuce leaves, and virus infectivity was evaluated for 28 days in a growth chamber. Results: Virus survival was similar for water stored at 11, 19, and 24°C and there was no difference in infectivity based on water quality. After 28 days, a maximum 1.5 log reduction was observed for both TV and MNV. TV decreased by 1.97-2.26 log and MNV decreased by 1.28- 1.48 logs after 28 days in soil; infectivity was not influenced by water type. Infectious TV and MNV were recovered from lettuce surfaces for up to 7 and 10 days after inoculation, respectively. Across the experiments there was no significant impact of water quality on the stability of the human NoV surrogates. Discussion: Overall, the human NoV surrogates were highly stable in water with a less than 1.5 log reduction over 28 days and no difference observed based on the water quality. In soil, the titer of TV declined by approximately 2 logs over 28 days, while MNV declined by 1 log during the same time interval, suggesting surrogate-specific inactivation dynamics in the soil tested in this study. A 5-log reduction in MNV (day 10 post inoculation) and TV (day 14 post inoculation) was observed on lettuce leaves, and the inactivation kinetics were not significantly impacted by the quality of water used. These results suggest that human NoV would be highly stable in water, and the quality of the water (e.g., nutrient content, salinity, and turbidity) does not significantly impact viral infectivity.

4.
Food Control ; 1322022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34629764

RESUMO

Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC ß-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used ß-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC ß-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, blaSHV66 , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including ß-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products.

5.
Int J Food Microbiol ; 339: 109033, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401188

RESUMO

An increasing number of hepatitis E virus (HEV) infections in industrialized countries have been foodborne and linked to the consumption of undercooked pork products. To date, data on the prevalence of HEV in pork products sold in the United States is limited and no standard processing method exists for the detection of HEV in foods. In order to develop a processing method for the detection of HEV in pork products, ground pork and pork liver were selected for method development. Murine norovirus (MNV) was used as a process control. A filtration step prior to RNA detection was shown to reduce the level of PCR inhibitors in ground pork and an additional ultracentrifugation process was successful in removing PCR inhibitors in pork liver. MNV RNA was detected in ground pork and liver samples inoculated with 4.7 log10 PFU/g and 3.0 log10 PFU/g, respectively. Using the developed method for viral RNA detection in ground pork and pork liver, 20 packages of ground pork (six 1 g sub-samples per package) and 14 pork livers (four 1 g sub-samples per liver) were screened for the presence of HEV RNA. Fifteen out of 119 (12.6%) ground pork samples tested positive for HEV RNA and 13 out of 20 packages (65%) contained at least one positive sample. Twenty-five of 56 (45%) of pork liver samples were positive for HEV RNA and 6 of 14 livers (43%) had all sub-samples test positive for HEV RNA. Overall, the results indicate ground pork and pig liver as a potential source of HEV.


Assuntos
Microbiologia de Alimentos/estatística & dados numéricos , Carne de Porco/virologia , Carne Vermelha/virologia , Animais , Hepatite E/epidemiologia , Vírus da Hepatite E/genética , Fígado/virologia , Produtos da Carne/virologia , Norovirus/genética , Prevalência , RNA Viral/análise , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos
6.
J Food Prot ; 81(5): 719-728, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29611730

RESUMO

Although transmission of human norovirus in food establishments is commonly attributed to consumption of contaminated food, transmission via contaminated environmental surfaces, such as those in bathrooms, may also play a role. Our aim was to determine the prevalence of human norovirus on bathroom surfaces in commercial food establishments in New Jersey, Ohio, and South Carolina under nonoutbreak conditions and to determine characteristics associated with the presence of human norovirus. Food establishments (751) were randomly selected from nine counties in each state. Four surfaces (underside of toilet seat, flush handle of toilet, inner door handle of stall or outer door, and sink faucet handle) were swabbed in male and female bathrooms using premoistened macrofoam swabs. A checklist was used to collect information about the characteristics, materials, and mechanisms of objects in bathrooms. In total, 61 (1.5%) of 4,163 swabs tested were presumptively positive for human norovirus, 9 of which were confirmed by sequencing. Some factors associated with the presence of human norovirus included being from South Carolina (odd ratio [OR], 2.4; 95% confidence interval [CI], 1.2 to 4.9; P < 0.05) or New Jersey (OR, 1.7; 95% CI, 0.9 to 3.3; 0.05 < P < 0.10), being a chain establishment (OR, 1.9; 95% CI, 1.1 to 3.3; P < 0.05), being a unisex bathroom (versus male: OR, 2.0; 95% CI, 0.9 to 4.1; 0.05 < P < 0.10; versus female: OR, 2.6; 95% CI, 1.2 to 5.7; P < 0.05), having a touchless outer door handle (OR, 3.3; 95% CI, 0.79 to 13.63; 0.05 < P < 0.10), and having an automatic flush toilet (OR, 2.5, 95% CI, 1.1 to 5.3; 0.05 < P < 0.10). Our findings confirm that the presence of human norovirus on bathroom surfaces in commercial food establishments under nonoutbreak conditions is a rare event. Therefore, routine environmental monitoring for human norovirus contamination during nonoutbreak periods is not an efficient method of monitoring norovirus infection risk.


Assuntos
Infecções por Caliciviridae , Surtos de Doenças/prevenção & controle , Norovirus , Banheiros , Infecções por Caliciviridae/transmissão , Desinfecção , Feminino , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , Masculino , New Jersey , Norovirus/isolamento & purificação , Ohio , Prevalência , South Carolina , Banheiros/estatística & dados numéricos
7.
Food Microbiol ; 69: 25-32, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28941906

RESUMO

Human norovirus (NoV) is a leading cause of fresh produce associated outbreaks. Previous research indicates that the roots of growing leafy greens and berries internalize human NoV. However the effect of plant type and inoculum level on internalization rates has not been directly compared. In this study we compared the internalization and dissemination rates of human NoV and its surrogate, Tulane virus (TV) in green onion, radishes, and Romaine lettuce. We also evaluated the effect inoculum level and plant growth matrix on the rate of viral internalization. In the hydroponic growth system, we detected internalization and dissemination of human NoV RNA in green onions. In hydroponically growing green onions inoculated with high titer TV, we found higher rates of internalization and dissemination compared to green onions inoculated with low titer TV. In soil growth systems, no infectious TV was detected in either green onion or radishes. However, in Romaine lettuce plants grown in soil approximately 4 log10 PFU/g was recovered from all tissues on day 14 p.i. Overall, we found that the type of plant, growth matrix, and the inoculum level influences the internalization and dissemination of human NoV and TV.


Assuntos
Caliciviridae/fisiologia , Contaminação de Alimentos/análise , Norovirus/fisiologia , Cebolas/virologia , Raphanus/virologia , Verduras/virologia , Internalização do Vírus , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Humanos , Norovirus/genética , Norovirus/isolamento & purificação , Cebolas/crescimento & desenvolvimento , Raphanus/crescimento & desenvolvimento , Microbiologia do Solo , Verduras/crescimento & desenvolvimento
8.
Autophagy ; 13(4): 739-753, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28129024

RESUMO

Autophagy is an essential component of host immunity and used by viruses for survival. However, the autophagy signaling pathways involved in virus replication are poorly documented. Here, we observed that rabies virus (RABV) infection triggered intracellular autophagosome accumulation and results in incomplete autophagy by inhibiting autophagy flux. Subsequently, we found that RABV infection induced the reduction of CASP2/caspase 2 and the activation of AMP-activated protein kinase (AMPK)-AKT-MTOR (mechanistic target of rapamycin) and AMPK-MAPK (mitogen-activated protein kinase) pathways. Further investigation revealed that BECN1/Beclin 1 binding to viral phosphoprotein (P) induced an incomplete autophagy via activating the pathways CASP2-AMPK-AKT-MTOR and CASP2-AMPK-MAPK by decreasing CASP2. Taken together, our data first reveals a crosstalk of BECN1 and CASP2-dependent autophagy pathways by RABV infection.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Caspase 2/metabolismo , Fosfoproteínas/metabolismo , Vírus da Raiva/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Autofagossomos/metabolismo , Camundongos , Modelos Biológicos , Chaperonas Moleculares , Proteínas Proto-Oncogênicas c-akt/metabolismo , Raiva/metabolismo , Raiva/patologia , Raiva/virologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
9.
Appl Environ Microbiol ; 82(19): 6037-45, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474724

RESUMO

UNLABELLED: Human norovirus (HuNoV) is a leading cause of foodborne diseases worldwide. High-pressure processing (HPP) is one of the most promising nonthermal technologies for the decontamination of viral pathogens in foods. However, the survival of HuNoVs after HPP is poorly understood because these viruses cannot be propagated in vitro In this study, we estimated the survival of different HuNoV strains within genogroup II (GII) after HPP treatment using viral receptor-binding ability as an indicator. Four HuNoV strains (one GII genotype 1 [GII.1] strain, two GII.4 strains, and one GII.6 strain) were treated at high pressures ranging from 200 to 600 MPa. After treatment, the intact viral particles were captured by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) that contained histo-blood group antigens, the functional receptors for HuNoVs. The genomic RNA copies of the captured HuNoVs were quantified by real-time reverse transcriptase PCR (RT-PCR). Two GII.4 HuNoVs had similar sensitivities to HPP. The resistance of HuNoV strains against HPP ranked as follows: GII.1 > GII.6 > GII.4, with GII.4 being the most sensitive. Evaluation of temperature and matrix effects on HPP-mediated inactivation of HuNoV GII.4, GII.1, and GII.6 strains showed that HuNoV was more easily inactivated at lower temperatures and at a neutral pH. In addition, phosphate-buffered saline (PBS) and minimal essential medium (MEM) can provide protective effects against HuNoV inactivation compared to H2O. Collectively, this study demonstrated that (i) different HuNoV strains within GII exhibited different sensitivities to high pressure, and (ii) HPP is capable of inactivating HuNoV GII strains by optimizing pressure parameters. IMPORTANCE: Human norovirus (HuNoV) is a leading cause of foodborne disease worldwide. Noroviruses are highly diverse, both antigenically and genetically. Genogroup II (GII) contains the majority of HuNoVs, with GII genotype 4 (GII.4) being the most prevalent. Recently, GII.1 and GII.6 have emerged and caused many outbreaks worldwide. However, the survival of these GII HuNoVs is poorly understood because they are uncultivable in vitro Using a novel receptor-binding assay conjugated with real-time RT-PCR, we found that GII HuNoVs had variable susceptibilities to high-pressure processing (HPP), which is one of the most promising food-processing technologies. The resistance of HuNoV strains to HPP ranked as follows: GII.1 > GII.6 > GII.4. This study highlights the ability of HPP to inactivate HuNoV and the need to optimize processing conditions based on HuNoV strain variability and sample matrix.


Assuntos
Proteínas do Capsídeo/genética , Manipulação de Alimentos , Genoma Viral , Norovirus/fisiologia , Animais , Mucinas Gástricas/química , Genótipo , Humanos , Separação Imunomagnética , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa
10.
Int J Food Microbiol ; 232: 43-51, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27240219

RESUMO

Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR.


Assuntos
Infecções por Caliciviridae/prevenção & controle , Fragaria/virologia , Gastroenterite/prevenção & controle , Norovirus/efeitos da radiação , Ligação Viral/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Animais , Infecções por Caliciviridae/virologia , Surtos de Doenças , Raios gama , Mucinas Gástricas/metabolismo , Gastroenterite/virologia , Humanos , Separação Imunomagnética , Norovirus/classificação , Norovirus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos/virologia , Internalização do Vírus/efeitos da radiação
11.
Appl Environ Microbiol ; 82(7): 2086-99, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826225

RESUMO

Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin-magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.


Assuntos
Culinária/métodos , Crassostrea/virologia , Enterovirus/fisiologia , Doenças Transmitidas por Alimentos/virologia , Frutos do Mar/virologia , Inativação de Vírus , Animais , Enterovirus/química , Temperatura Alta , Humanos , Norovirus/química , Norovirus/fisiologia
12.
Appl Environ Microbiol ; 82(1): 116-23, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475110

RESUMO

Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces.


Assuntos
Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Norovirus/efeitos dos fármacos , Óxidos/farmacologia , Animais , Compostos Clorados/química , Manipulação de Alimentos/instrumentação , Gases/farmacologia , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Humanos , Cinética , Camundongos , Norovirus/crescimento & desenvolvimento , Óxidos/química , Aço Inoxidável/análise
13.
Int J Food Microbiol ; 211: 101-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188496

RESUMO

Fresh produce is a high risk food for human norovirus (NoV) contamination. To help control this pathogen in fresh produce, a better understanding of the interaction of human NoV and fresh produce needs to be established. In this study the attachment of human NoV and animal caliciviruses (murine norovirus, MNV-1; Tulane virus, TV) to fresh produce was evaluated, using both visualization and viral enumeration techniques. It was found that a human NoV GII.4 strain attached efficiently to the Romaine lettuce leaves and roots and green onion shoots, and that washing with PBS or 200 ppm of chlorine removed less than 0.4 log of viral RNA copies from the tissues. In contrast, TV and MNV-1 bound more efficiently to Romaine lettuce leaves than to the roots, and simple washing removed less than 1 log of viruses from the lettuce leaves and 1-4 log PFU of viruses from roots. Subsequently, the location of virus particles in fresh produce was visualized using a fluorescence-based Quantum Dots (Q-Dots) assay and confocal microscopy. It was found that human NoV virus-like particles (VLPs), TV, and MNV-1 associated with the surface of Romaine lettuce and were found aggregating in and around the stomata. In green onions, human NoV VLPs were found between the cells of the epidermis and cell walls of both the shoots and roots. However, TV and MNV-1 were found to be covering the surface of the epidermal cells in both the shoots and roots of green onions. Collectively, these results demonstrate that (i) washing with 200 ppm chlorine is ineffective in removing human NoV from fresh produce; and (ii) different viruses vary in their localization patterns to different varieties of fresh produce.


Assuntos
Caliciviridae/fisiologia , Norovirus/fisiologia , Cebolas/virologia , Animais , Caliciviridae/efeitos dos fármacos , Cloro/farmacologia , Contaminação de Alimentos/análise , Manipulação de Alimentos , Humanos , Camundongos , Norovirus/efeitos dos fármacos , Folhas de Planta/virologia , Raízes de Plantas/virologia
14.
Appl Environ Microbiol ; 81(19): 6669-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187961

RESUMO

Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.


Assuntos
Desinfecção/métodos , Ostreidae/virologia , Rotavirus/fisiologia , Frutos do Mar/virologia , Inativação de Vírus , Animais , Desinfecção/instrumentação , Contaminação de Alimentos/prevenção & controle , Humanos , Pressão , Rotavirus/classificação , Rotavirus/genética , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia , Temperatura
15.
Appl Environ Microbiol ; 81(19): 6679-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187968

RESUMO

Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels.


Assuntos
Infecções por Caliciviridae/virologia , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/virologia , Norovirus/fisiologia , Ostreidae/virologia , Frutos do Mar/virologia , Inativação de Vírus , Animais , Modelos Animais de Doenças , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/instrumentação , Vida Livre de Germes , Humanos , Norovirus/química , Pressão , Suínos
16.
Appl Environ Microbiol ; 81(14): 4791-800, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956773

RESUMO

Human norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce.


Assuntos
Infecções por Caliciviridae/virologia , Caliciviridae/fisiologia , Folhas de Planta/virologia , Internalização do Vírus , Animais , Secas , Contaminação de Alimentos , Humanos , Vírus do Mosaico/fisiologia , Norovirus/fisiologia , Estresse Fisiológico
17.
Appl Environ Microbiol ; 81(8): 2727-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662970

RESUMO

Human norovirus (NoV) is the leading cause of foodborne disease in the United States, and epidemiological studies have shown that fresh produce is one of the major vehicles for the transmission of human NoV. However, the mechanisms of norovirus contamination and persistence in fresh produce are poorly understood. The objective of this study is to determine whether human NoV surrogates, murine norovirus (MNV-1) and Tulane virus (TV), can attach and become internalized and disseminated in strawberries grown in soil. The soil of growing strawberry plants was inoculated with MNV-1 and TV at a level of 10(8) PFU/plant. Leaves and berries were harvested over a 14-day period, and the viral titer was determined by plaque assay. Over the course of the study, 31.6% of the strawberries contained internalized MNV-1, with an average titer of 0.81 ± 0.33 log10 PFU/g. In comparison, 37.5% of strawberries were positive for infectious TV, with an average titer of 1.83 ± 0.22 log10 PFU/g. A higher percentage (78.7%) of strawberries were positive for TV RNA, with an average titer of 3.15 ± 0.51 log10 RNA copies/g as determined by real-time reverse transcriptase quantitative PCR (RT-qPCR). In contrast, no or little virus internalization and dissemination were detected when TV was inoculated into bell peppers grown in soil. Collectively, these data demonstrate (i) virally contaminated soils can lead to the internalization of virus via plant roots and subsequent dissemination to the leaf and fruit portions of growing strawberry plants and (ii) the magnitude of internalization is dependent on the type of virus and plant.


Assuntos
Infecções por Caliciviridae/transmissão , Caliciviridae/fisiologia , Doenças Transmitidas por Alimentos/etiologia , Fragaria/virologia , Frutas/virologia , Internalização do Vírus , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Humanos , Norovirus/fisiologia , Raízes de Plantas/virologia
18.
Int J Food Microbiol ; 198: 28-36, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25590261

RESUMO

Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation.


Assuntos
Caliciviridae/efeitos da radiação , Microbiologia de Alimentos/métodos , Fragaria/virologia , Inativação de Vírus , Animais , Infecções por Caliciviridae/prevenção & controle , Eletroforese em Gel de Poliacrilamida , Norovirus/fisiologia , Norovirus/efeitos da radiação
19.
Infect Dis Clin North Am ; 27(3): 651-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24011835

RESUMO

Human norovirus (NoV) is the number one cause of foodborne illness. Despite tremendous research efforts, human NoV is still poorly understood and understudied. There is no effective measure to eliminate this virus from food and the environment. Future research efforts should focus on developing: (1) an efficient cell culture system and a robust animal model, (2) rapid and sensitive detection methods, (3) novel sanitizers and control interventions, and (4) vaccines and antiviral drugs. Furthermore, there is an urgent need to build multidisciplinary and multi-institutional teams to combat this important biodefense agent.


Assuntos
Infecções por Caliciviridae , Doenças Transmitidas por Alimentos , Norovirus , Anti-Infecciosos/uso terapêutico , Antivirais/uso terapêutico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Humanos , Norovirus/patogenicidade , Vacinas Virais/uso terapêutico
20.
Appl Environ Microbiol ; 78(17): 6143-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729543

RESUMO

Fresh produce is a major vehicle for the transmission of human norovirus (NoV) because it is easily contaminated during both pre- and postharvest stages. However, the ecology of human NoV in fresh produce is poorly understood. In this study, we determined whether human NoV and its surrogates can be internalized via roots and disseminated to edible portions of the plant. The roots of romaine lettuce growing in hydroponic feed water were inoculated with 1 × 10(6) RNA copies/ml of a human NoV genogroup II genotype 4 (GII.4) strain or 1 × 10(6) to 2 × 10(6) PFU/ml of animal caliciviruses (Tulane virus [TV] and murine norovirus [MNV-1]), and plants were allowed to grow for 2 weeks. Leaves, shoots, and roots were homogenized, and viral titers and/or RNA copies were determined by plaque assay and/or real-time reverse transcription (RT)-PCR. For human NoV, high levels of viral-genome RNA (10(5) to 10(6) RNA copies/g) were detected in leaves, shoots, and roots at day 1 postinoculation and remained stable over the 14-day study period. For MNV-1 and TV, relatively low levels of infectious virus particles (10(1) to 10(3) PFU/g) were detected in leaves and shoots at days 1 and 2 postinoculation, but virus reached a peak titer (10(5) to 10(6) PFU/g) at day 3 or 7 postinoculation. In addition, human NoV had a rate of internalization comparable with that of TV as determined by real-time RT-PCR, whereas TV was more efficiently internalized than MNV-1 as determined by plaque assay. Taken together, these results demonstrated that human NoV and animal caliciviruses became internalized via roots and efficiently disseminated to the shoots and leaves of the lettuce.


Assuntos
Caliciviridae/isolamento & purificação , Caliciviridae/fisiologia , Internalização do Vírus , Animais , Humanos , Dados de Sequência Molecular , Folhas de Planta/virologia , Raízes de Plantas/virologia , Brotos de Planta/virologia , RNA Viral/genética , Análise de Sequência de DNA , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...